Representation of sparse Legendre expansions
نویسندگان
چکیده
We derive a new deterministic algorithm for the computation of a sparse Legendre expansion f of degree N with M N nonzero terms from only 2M function resp. derivative values f (1), j = 0, . . . , 2M − 1 of this expansion. For this purpose we apply a special annihilating filter method that allows us to separate the computation of the indices of the active Legendre basis polynomials and the evaluation of the corresponding coefficients.
منابع مشابه
Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملReconstruction of sparse Legendre and Gegenbauer expansions
Recently the reconstruction of sparse trigonometric polynomials has attained much attention. There exist recovery methods based on random sampling related to compressed sensing (see e.g. [17, 10, 5, 4] and the references therein) and methods based on deterministic sampling related to Prony–like methods (see e.g. [15] and the references therein). Both methods are already generalized to other pol...
متن کاملSparse Legendre expansions via l1-minimization
We consider the problem of recovering polynomials that are sparse with respect to the basis of Legendre polynomials from a small number of random samples. In particular, we show that a Legendre s-sparse polynomial of maximal degree N can be recovered fromm s log(N) random samples that are chosen independently according to the Chebyshev probability measure dν(x) = π−1(1 − x2)−1/2dx. As an effici...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Comput.
دوره 50 شماره
صفحات -
تاریخ انتشار 2013